

Interpretable and Actionable Models using Attribute and Uncertainty Information

Introduction

Current deep-learning based regression classification or achieve superior models performance over humans in benchmarks but suffer manv from both poor interpretability and **actionability** due to the black-box nature of these models and the lack of control of decisions. We define their interpretability as the ability to understand why a model arrived at its decisions and actionability as the ability to intervene when we believe the model made mistakes.

In this work, we show that

1) attribute models can improve the interpretability of our models while not compromising improving the even and performance of our models on the CUB and OAI datasets,

2) attribute models can also be used in a **test-time intervention** procedure that enables humans make contributions to to intermediate model outputs and overall improve target performance,

3) and **uncertainty modelling** of these attributes enables us to understand which attributes the model is having difficulty with provide better human and intervention, allowing us to better test-time achieve intervention results.

Dataset

We used two image datasets, the Caltech-UCSD Birds 200 (CUB) dataset and the Osteoarthritis Initiative (OAI) dataset.

CUB dataset (public) [1]:

- Colored image classification of 200 different bird species.
- Pre-processed by removing attributes with counts < 10
- A total of **113 bird attributes** were used out of the original 312 hand-labelled **binary** attributes.
- Train examples: 5994, Test examples: 5794

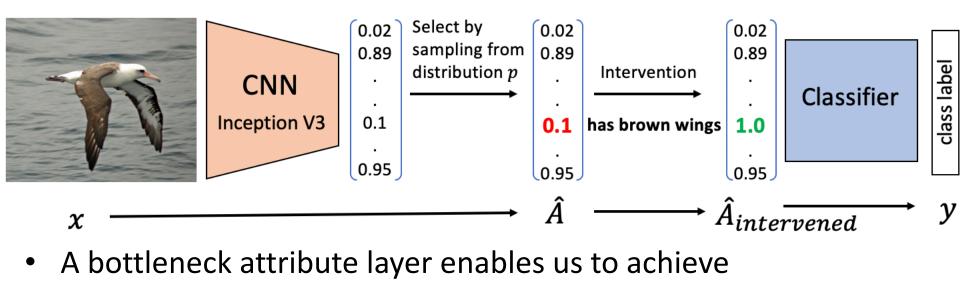
OAI dataset (private):

- Grayscale knee X-ray images ordinal regression of the Kellgren & Lawrence Grade (KLG), which indicates the severity of osteoarthritis.
- Selected the 10 least imbalanced attributes of the original 18 attributes, each an ordinal number representing clinical annotations.
- Train examples: 21340, Test examples: 11320

Interpretability with Attribute Models

- Given image x and target y, we could use a deep network to model $x \to y$ directly, i.e. $\hat{y} = f(x)$.
- This is not interpretable nor actionable as users have to accept the predicted outputs.
- We introduce an intermediate attributes A layer which is a **bottleneck layer** that such that the final prediction only uses these attributes and not other parts of the input.

Actionability with Test-time Intervention

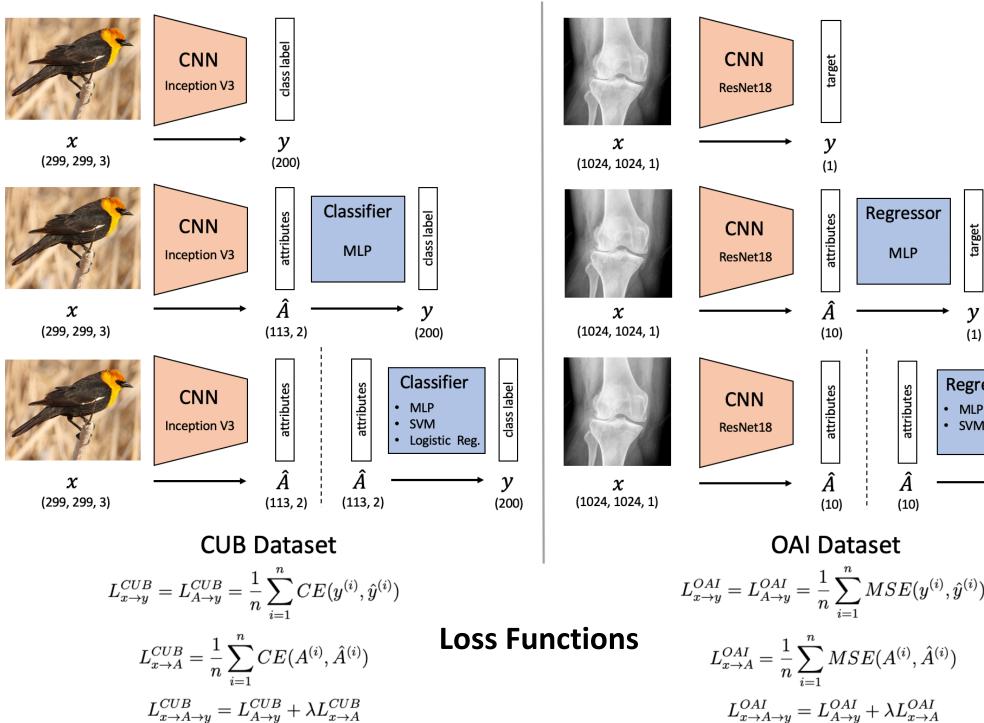


- interpretability and actionability by allowing us to ask counterfactual questions such as "What happens if the model sees brown wings instead?"
- As shown above, this enables us to examine model outputs and potential outcomes, improving target performance.
- We simulate a **human intervention** procedure where we get assistance on certain attribute values by sampling attributes according to some sampling distribution p.

Yew Siang Tang, Mikaela Uy, Olivia Hsu {*yewsiang, mikacuy, owhsu*} @*stanford.edu*

Computer Science Department, Stanford University

Model Architectures



Uncertainty-based Intervention

- Test-time intervention will be a realistic setting if there is assistance on only a small subset of attributes.
- We want to intervene on attributes that have high uncertainty and hence, are likely to give us more information.
- To understand the uncertainty of attributes, we implemented Bayesian neural networks through the use of dropouts [2] and compute the standard deviation of samples in Algorithm 1.
- We perform test-time intervention with the following **uncertainty-based sampling distribution**, $p_{dropout}$, where S is a weight that controls how deterministic we want to be.
- We compare with random and softmax schemes to show the effectiveness of our sampling uncertainty scheme.

 $p_{dropout}(a_i) = \frac{(\sigma_i)^S}{\sum_{i=1}^{K} (\sigma_i)^S}$

Algorithm 1 Predicting uncertainty σ_i	of attribute a_i of given
input x	
1: Generated samples $G = \emptyset$	
2: for j in range(num_samples) do	
3: $\hat{a}_i = CNN(x)$	▷ dropout turned on
4: Append \hat{a}_i to G	
5: $\sigma_i = std(G)$	

Discussion

We were able to demonstrate interpretability and actionability for deep-learning image models using multiple datasets through attribute modeling and uncertaintybased test-time intervention. Test-time replacement of both random and highly uncertain attributes improved classification accuracy, which was expected. Our results not only show better overall classification performance, but also illustrate specific examples where humans intervened to correct the classification.

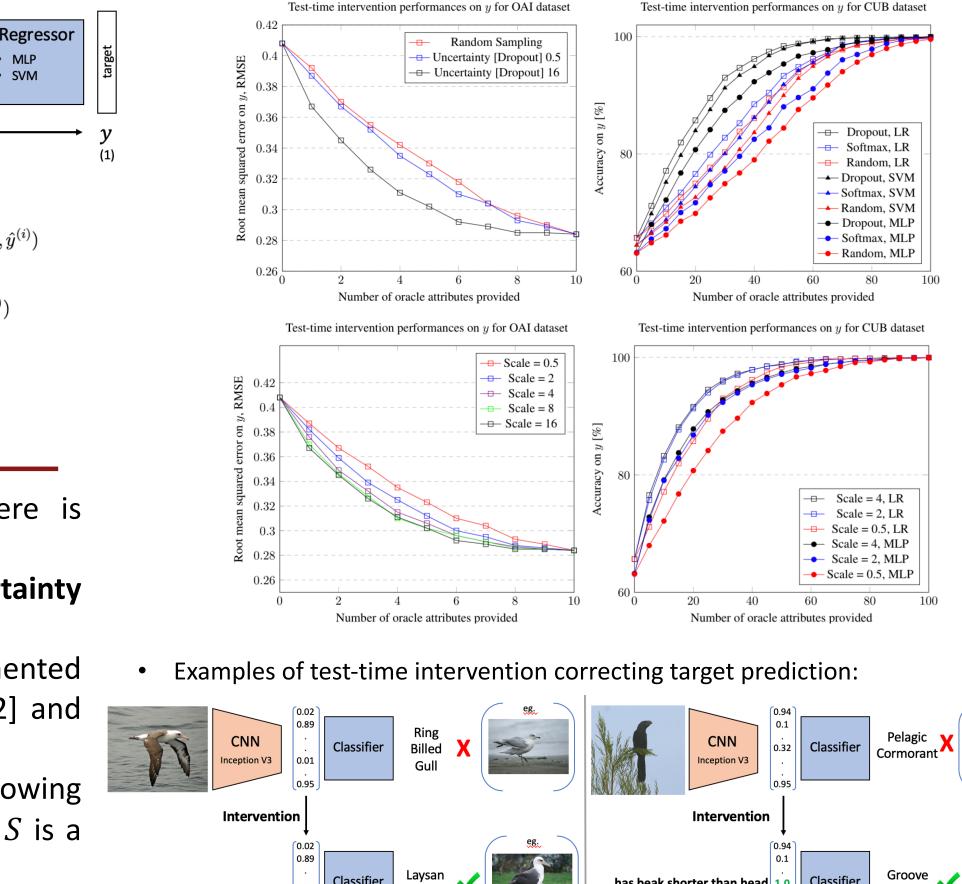
Stanford **Computer Science**

Test-time intervention performances on y for CUB datas

Results

•	Prediction performances on y and A for different model setups					
		OAI		CUB		
	Algorithm	RMSE of y	RMSE of $A $	Acc of y	Acc of A	
	Oracle A with RBF SVM $A \rightarrow y$	0.120	-	100.00	-	
	X o y	0.428	-	74.64	-	
	$X o \hat{A} o y$	0.408	0.718	73.14	83.24	
	$X o \hat{A}, \ \hat{A} o y$ with MLP	0.429	0.737	63.93	94.92	
	$X \to \hat{A}, \ \hat{A} \to y$ with RBF SVM	-	-	64.43	94.92	
	$X \to \hat{A}, \ \hat{A} \to y$ with LR	_	_	65.67	94.92	

Test-time intervention improves the performance on multiple datasets. Selection based on uncertainty achieves the best.



Future Work

information gain on the output.

of given

rned on

Acknowledgements / References

which place probability distributions on the weights.

Use different ML models for $\hat{A} \rightarrow y$ on the OAI dataset.

We would like to thank Thao Nguyen and Pang Wei Koh for providing the initial codebase and data pre-processing for the CUB dataset.

Look into intervening on attributes with the maximum increase in expected

Expand on uncertainty modeling using other methods, like Bayesian CNNs

1] Wah C., Branson S., Welinder P., Perona P., Belongie S. "The Caltech-UCSD Birds-200-2011 Dataset." Computation & Neural Systems echnical Report, CNS-TR-2011-001. 2] Gal, Y., and Ghahramani, Z. 2015a. Bayesian convolutional neural networks with bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158