Underwater Object Detection through HOG-SVM and Deep Learning
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In the recent years, development in the robotics
industry has been growing fast. Much research has
been devoted to many of its applications, including
aerial drones that resulted in many commercially
used drone applications. However, limited works
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then fed into a classifier. More recent and FINDINGS ) to detect divers Transfer Learning
state-of-the-art approaches for object detection 64 RESULTS )
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