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Abstract
Deep learning techniques for point cloud data have

demonstrated great potentials in solving classical problems
in 3D computer vision such as 3D object classification and
segmentation. Several recent 3D object classification meth-
ods have reported state-of-the-art performance on CAD
model datasets such as ModelNet40 with high accuracy
(∼92%). Despite such impressive results, in this paper, we ar-
gue that object classification is still a challenging task when
objects are framed with real-world settings. To prove this,
we introduce ScanObjectNN, a new real-world point cloud
object dataset based on scanned indoor scene data. From
our comprehensive benchmark, we show that our dataset
poses great challenges to existing point cloud classification
techniques as objects from real-world scans are often clut-
tered with background and/or are partial due to occlusions.
We identify three key open problems for point cloud object
classification, and propose new point cloud classification
neural networks that achieve state-of-the-art performance on
classifying objects with cluttered background. Our dataset
and code are publicly available in our project page 1.

1. Introduction
The task of understanding our real world has achieved

a great leap in recent years. The rise of powerful compu-
tational resources such as GPUs and the availability of 3D
data from depth sensors have accelerated the fast-growing
field of 3D deep learning. Among various 3D data represen-
tations, point clouds are widely used in computer graphics
and computer vision thanks to their simplicity. Recent works
have shown great promises in solving classical scene un-
derstanding problems with point clouds such as 3D object
classification and segmentation.

However, the current progress on classification with 3D
point clouds has witnessed a trend of performance satura-
tion. For example, many recent object classification methods
have reported very high accuracies in 2018, and the trend
of bringing the accuracy towards perfection is still ongoing.

1https://hkust-vgd.github.io/scanobjectnn/

This phenomenon inspires us to raise a question on whether
problems such as 3D object classification have been totally
solved, and to think about how to move forward.

To answer this question, we perform a benchmark of ex-
isting point cloud object classification techniques with both
synthetic and real-world data. For synthetic objects, we use
ModelNet40 [43], the most popular dataset in point cloud
object classification that contains about 10,000 CAD models.
To support the investigation of object classification meth-
ods on real-world data, we introduce ScanObjectNN, a new
point cloud object dataset from the state-of-the-art scene
mesh datasets SceneNN [19] and ScanNet [9]. Based on
the initial instance segmentation from the scene datasets, we
manually filter and select objects for 15 common categories,
and further enrich the dataset by considering additional ob-
ject perturbations.

Our study shows that while the accuracy with CAD data
is reaching perfection, learning to classify a real-world ob-
ject dataset is still a very challenging task. By analyzing
the benchmark results, we identify three open issues that
are worth to further explore for future researches. First,
classification models trained on synthetic data often do not
generalize well to real-world data such as point clouds recon-
structed from RGB-D scans [19, 9], and vice versa. Second,
challenging in-context and partial observations of real-world
objects are common due to occlusions and reconstruction
errors; for example, they can be found in window-based ob-
ject detectors [38] in many robotics or autonomous vehicle
applications. Finally, how to handle background effectively
when they appear together with objects due to clutter in the
real-world scenes.

As our dataset opens up opportunities to tackle such open
problems in real-world object classification, we also present
a new method for point cloud object classification that can
improve upon the state-of-the-art results on our dataset by
jointly learning the classification and segmentation tasks in
a single neural network.

In summary, we make the following contributions:
• A new object dataset from meshes of scanned real-world

scene for training and testing point cloud classification,
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• A comprehensive benchmark of existing object classifica-
tion techniques on synthetic and real-world point cloud
data,

• A new network architecture that is able to classify objects
observed in a real-world setting by a joint learning of
classification and segmentation.

2. Related Works
In this paper, we focus on object classification with point

cloud data, which has advanced greatly in the past few years.
We briefly discuss the related works and their datasets, below.

Object Classification on Point Clouds. Early attempts to
classifying point clouds were developed by adapting ideas
from deep learning on images, e.g., using multiple view im-
ages [39, 48, 46, 22], or applying convolutions on 3D voxel
grids [27, 43]. While it seems natural to extend the convolu-
tion operations from 2D to 3D, it is shown that performing
convolutions on a point cloud is not a trivial task [30, 49].
The difficulty stems from the fact that a point cloud has no
well-defined order of points on which convolutions can be
performed. Qi et al. [30] addressed this problem by learning
global features of point clouds using a symmetric function
that is invariant to the order of points. Alternatively, some
other methods proposed to learn local features from convo-
lutions, e.g., [32, 25, 20, 42, 44, 18, 2, 24, 33, 11] or from
autoencoders [45]. There are also methods jointly learning
features from point clouds and multi-view projections [47].
It is also possible to treat point clouds and views as se-
quences [26, 17, 15], or to use unsupervised learning [16].

Recent works demonstrate very competitive and com-
pelling performances on standard datasets. For example, the
gap between state-of-the-art methods such as SpecGCN [41],
SpiderCNN [44], DGCNN [42], PointCNN [25] is less than
1% on ModelNet40 dataset [43]. In the online leaderboard
maintained by the authors of ModelNet40, the accuracy of
the object classification task is reaching perfection, with
92% for point cloud methods [25, 42, 44, 26].

Object Datasets. There are a limited number of datasets
that can be used to train and test 3D object classification
methods. ModelNet40 was originally developed by Wu et
al. [43] for learning a convolutional deep-belief network
to model 3D shapes represented in voxel grids. Objects
in ModelNet40 are CAD models of 40 common categories
such as airplane, motorbike, chair and table, to name a few.
This dataset has been a common benchmark for point cloud
object classification [30]. ShapeNet [7] is an alternative
large-scale dataset of 3D CAD shapes with approximately
51, 000 objects in 55 categories. However, this set is usually
used for benchmarking part segmentation.

So far, object classification on ModelNet40 is done with
the assumption that objects are clean, complete, and free
from any background noise. Unfortunately, this assumption

is not often held in practice. It is common to see incomplete
(partial) objects due to the imperfection of 3D reconstruction.
In addition, objects in real-world settings are often scanned
when being placed in a scene, which makes them appear in a
clutter, and thus may be attached with background elements.
A potential treatment is to remove such background using
human annotators [28]. However, this solution is tedious,
prone to errors, and subjective to the experience of annota-
tors. Other works synthesize challenges on CAD data by
introducing noise simulated by Gaussians [4, 12] or created
with a parametic model [6] to mimic real world scenarios.
Recently, the trend of sim2real [3] also aims to bridge the
gap between synthetic and real data.

Prior to our work, there are also a few datasets of real-
world object scans [10, 8, 5] but most are small in scale and
are not suitable for training object classification networks,
which often have thousands of parameters. For example, in
robotics, Sydney urban objects dataset [10] contains only 631
objects of 26 categories captured by a LiDAR camera, which
is mainly used for evaluation [27, 2] but not for training.
Some datasets [36, 5] are captured in controlled environment
which might greatly differ from real-world scenes. Choi et
al. [8] proposed a dataset of more than 10,000 object scans in
the real world. However, not all of their scans can be success-
fully reconstructed; the online repository by the authors also
provided only about 400 reconstructed objects. RGB-D and
3D scene meshes datasets [19, 9, 1, 37, 34] have more objects
that are reconstructed along with the scenes, but such ob-
jects are often considered in a scene segmentation or object
detection task, and not under an object classification setup.
RGBD-to-CAD object classification challenge [21, 29] pro-
vides an object dataset that mixes CAD models and real-
world scans. Its goal is to classify RGB-D objects such that a
retrieval can be done to find similar CAD models. However,
several categories are ambiguous, and objects are supposed
to be well segmented before classification. ScanNet [9] has a
benchmark on 3D object classification with partially scanned
objects. However, this dataset is designed for volume-based
object classification [31], and there are quite few techniques
that report their results with this data.

3. Benchmark Data
Our goal is to quantitatively analyze the performances of

existing object classification methods on point clouds. We
split our task into two parts: benchmarking with synthetic
data and with real-world data.

3.1. Synthetic Data - ModelNet40
For synthetic data, we experiment with the well-known

ModelNet40 dataset [43]. This set is a collection of CAD
models with 40 object categories. The dataset includes 9,840
objects for training and 2,468 objects for testing. The ob-
jects in ModelNet40 are synthetic, and thus are complete,
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Figure 1. Sample objects from our dataset.

well-segmented, and noise-free. In this experiment, we use
the uniformly dense point cloud variant as preprocessed by
Qi et al. [30]. Each point cloud is randomly sampled to
1024 points as input to the networks unless otherwise stated.
The point clouds are centered at zero, and we use local co-
ordinates (x, y, z) normalized to [−1, 1] as point attributes.
We follow the default train/test split, and use the default
parameters as in the original implementations of the meth-
ods. Our benchmark is performed with a NVIDIA Tesla
P100 GPU. We re-trained PointNet [30], PointNet++ [32],
PointCNN [25], Dynamic Graph CNN (DGCNN) [42], 3D
modified Fisher Vector (3DmFV) [2], and SpiderCNN [44].
For remaining methods, we provided the results reported in
the original papers. We additionally report each method’s
best performance when provided with additional informa-
tion such as point normals. The results are shown in Table 1.
It can be observed that the performance of recent methods
is becoming incremental, and fluctuates around 92%. This
saturating score inspires us to revisit the object classification
problem: Can classification methods trained on ModelNet40
perform well on real-world data? Or is there still room for
more research problems to be explored?

3.2. Real-World Data - ScanObjectNN
Objects obtained from real-world 3D scans are signifi-

cantly different from CAD models due to the presence of
background noise and the non-uniform density due to holes
from incomplete scans/reconstructions and occlusions. This
situation is often seen in sliding window-based object detec-

Method Avg. Class Overall
Accuracy Accuracy

ECC [35] 83.2 87.4
PointNet [30] 86.2 89.2
DeepSets [49] - 90.0

Flex-Convolution [14] - 90.2
Kd-Net [23] 88.5 90.6 (91.8 *)

PointNet++ [32] 87.8 90.7 (91.9 w/ normal)
SO-Net [24] 87.3 90.9 (93.4 w/ normal)
KCNet [33] - 91
3DmFV [2] 86.3 91.4

SpecGCN [41] - 91.5 (92.1 w/ normal)
SpiderCNN [44] 86.8 90.0 (92.4 w/ normal)

DGCNN [42] 90.2 92.2
PointCNN [25] 88.8 92.5

Table 1. Baseline results on ModelNet40 dataset for point cloud
classification. Inputs are point coordinates, unless otherwise stated;
* denotes the use of more input points (32K).

tion [38] in which a window may enclose an object of interest
partially and also include background elements within the
window. Due to these properties, applying existing point
cloud classification methods to real-world data may not pro-
duce the same good results as CAD models.

3.2.1 Data Collection

To study this potential issue, we build a real-world object
dataset based on two popular scene meshes datasets: Sce-
neNN [19] and ScanNet [9]. SceneNN has 100 annotated



Class Bag Bed Bin Box Cabinet Chair Desk Display Door Pillow Shelf Sink Sofa Table Toilet

#Objects 78 135 201 127 347 395 149 181 221 105 267 118 254 242 82

Table 2. Classes and objects in our dataset.

scenes with highly cluttered objects while ScanNet has a
larger collection of 1513 indoor scenes. From a total of
more than 1600 scenes from SceneNN and ScanNet, we
selected 700 unique scenes. We then manually examined
each object, fixed inconsistent labels, and discard objects
that are ambiguous, have low reconstruction quality, have
unknown labels, are too sparse, and have too few instances
to form a category for training. During categorization, we
also took into account inter-class balancing to avoid any bias
potentially coming from classes with more samples.

The results are 2902 objects that are categorized into 15
categories. The raw objects are represented by a list of points
with global and local coordinates, normals, colors attributes
and semantic labelsOther works synthesize challenges on
CAD data by introducing noise simulated by Gaussians [4,
12] or created with a parametic model [6]. Recently, the
trend of sim2real [3] also aims to bridge the gap between
synthetic and real data. As in the experiment with synthetic
data, we sample all raw objects to 1024 points as input to the
networks and all methods were trained using only the local
(x, y, z) coordinates. We will make our dataset publicly
available for future research. Table 2 summarizes classes
and objects in our dataset.

3.2.2 Data Enrichment
Based on the selected objects, we construct several variants
that represent different levels of difficulty of our dataset. This
allows us to explore the robustness of existing classification
methods in more extreme real-world scenarios.
Vanilla. The first variant is referred to as OBJ ONLY
which includes only ground truth segmented objects ex-
tracted from the scene meshes datasets. This variant has
the closest form analogous to its CAD counterpart, and is
used to investigate the robustness of classification methods
to noisy objects with deformed geometric shape and non-
uniform surface density. Sample objects of this variant are
shown in Figure 2(a).
Background. The previous variant assumes that an ob-
ject can be accurately segmented before being classified.
However, in real-world scans, objects are often presented
in under-segmentation situations, i.e., background elements
or parts of nearby objects are included, and accurate anno-
tations for such under-segmentations are also not always
available. Those background elements may provide the con-
text where objects belong to, and thus would become a good
hint for object classification, e.g., laptops often sit on desks.
However, they may also introduce distractions which corrupt

(a) Objects only. (b) Objects with background.

Figure 2. Example objects from our dataset.

the classification, e.g., a pen may be under-segmented with a
table where it sits on and thus could be considered as a part
of the table rather than a separate object. To study these fac-
tors, we introduce a variant of our dataset where objects are
attached with background data (OBJ BG). We determine
such background by using the ground truth axis-aligned ob-
ject bounding boxes. Specifically, given a bounding box, all
points in the box are extracted to form an object. Sample
objects with background are shown in Figure 2(b).

Perturbed. The given bounding boxes from the ground-
truth tightly enclose the objects. However, in real-world
scenarios bounding boxes may over- or under-cover, or even
split objects. For example, in object detection techniques
such as R-CNN [13], object category has to be predicted
from a rough bounding box that localizes a candidate ob-
ject. To simulate this challenge, we extend our dataset by
translating, rotating (about the gravity axis), and scaling the
ground truth bounding boxes before extracting the geometry
in the box. We name the variants of these perturbations with
a common prefix PB.

The perturbations introduce various degrees of back-
ground and partiality to objects. In this work, we use four
perturbation variants in the increasing order of difficulty:
PB T25, PB T25 R, PB T50 R, and PB T50 RS. Suffix
T25 and T50 denote translation that randomly shifts the

bounding box up to 25% and 50% of its size from the box
centroid along each world axis. Suffix R and S denotes
rotation and scaling. Each perturbation variant contains five
random samples for each original object, resulting in up to
14, 510 perturbed objects in total. Since perturbation might
introduce invalid objects, e.g., objects that are almost com-
pletely out of the bounding box of interest, we perform an
additional check after perturbation by ensuring that at least
50% of the original object points remain in the bounding
box. Objects that do not satisfy this condition are discarded.
Sample point clouds of these variants are shown in Figure 3.
More details about perturbing objects can be found in our
supplementary material.



(a) OBJ_BG (b) PB_T25 (c) PB_T25_R (d) PB_T50_R (e) PB_T50_RS

Figure 3. An object in different perturbation variants.

4. Benchmark on ScanObjectNN
For a clearer picture of the maturity of point cloud-based

object classification, we benchmark several representative
methods on our dataset. We aim to identify the limitations
of current works on real-world data. We choose 3DmFV [2],
PointNet [30], SpiderCNN [44], PointNet++ [32], DGCNN
[42] and PointCNN[25] as our representative works.

4.1. Training on ModelNet40
We first study the case when training is done on Model-

Net40 and testing is done on ScanObjectNN. Since objects
in ModelNet40 are standalone with no background objects,
we also removed background in all our variants for fair eval-
uations. Furthermore, we only evaluated the current methods
on 11 (out of 15) common classes between ModelNet40 and
our dataset. Please refer to the supplementary material for
the details on these common classes.

Evaluation results are reported in Table 3. These results
show that the current techniques trained on CAD models
are not able to generalize to real-world data; all techniques
achieved less than 50% of accuracy. This is expected and is
because of the fact that real-world objects and CAD objects
are significantly different in their geometry. Real-world
objects are often incomplete and partial due to construction
errors and occlusions; their surfaces have low-frequency
noise; object boundaries are inaccurate. These are in contrast
to CAD objects, which are often clean and noise-free. We
also found that the harder the data is (i.e. more noise and
partiality), the lower the performance is, and this is consistent
for all techniques. In other words, knowledge learned from
synthetic objects in ModelNet40 is not well transferable
and/or applicable to real-world data.

4.2. Training on ScanObjectNN
In this experiment, we train and test the techniques on

ScanObjectNN to demonstrate training on datasets with real-
world properties should improve the performance in clas-
sifying real-world objects. We also analyze how different
perturbations can affect the classification performance. We
randomly split our dataset into two subsets: training (80%)
and test (20%) set. We ensure that the training and test sets
contain objects from different scenes so that similar objects
do not occur in the same set, e.g. same types of chairs can be
found in the same room. We report the performance of all the
techniques on the hardest split in Table 4. Full performances
on all splits are provided in our supplementary material.

OBJ ONLY

PB
T25

PB
T25

R

PB
T50

R

PB
T50

RS

3DmFV [2] 30.9 28.4 27.2 24.5 24.9
PointNet [30] 42.3 37.6 35.3 32.1 31.1

SpiderCNN [44] 44.2 37.7 34.5 31.7 30.9
PointNet++ [32] 43.6 37.8 37.2 33.3 32.0

DGCNN [42] 49.3 42.4 40.3 36.6 36.8
PointCNN [25] 32.2 28.7 28.1 26.4 24.6

Table 3. Overall accuracy in % on our dataset when training was
done on ModelNet40. Note that for a fair comparison, background
has been removed in all variants. The results show that training on
CAD models and testing on real-world data is challenging. Most
methods do not generalize well in this test.

OBJ ONLY

OBJ BG

PB
T25

PB
T25

R

PB
T50

R

PB
T50

RS

3DmFV [2] 73.8 68.2 67.1 67.4 63.5 63.0
PointNet [30] 79.2 73.3 73.5 72.7 68.2 68.2

SpiderCNN [44] 79.5 77.1 78.1 77.7 73.8 73.7
PointNet++ [32] 84.3 82.3 82.7 81.4 79.1 77.9

DGCNN [42] 86.2 82.8 83.3 81.5 80.0 78.1
PointCNN [25] 85.5 86.1 83.6 82.5 78.5 78.5

Table 4. Overall accuracy in % when training and testing were done
on ScanObjectNN. The training and testing are done on the same
variant. With real-world data, the more background and partiality
are introduced, the more challenging the classification task is.

For fair comparisons, we kept the same data augmenta-
tion process in all the methods (e.g., random rotation and
per-point jitter). We trained the methods to convergence
rather than selecting the best performance on the test set.

Vanilla. The 2nd column in Table 4 shows the overall
performance of existing methods when trained on the
simplest variant of our dataset (OBJ ONLY). This clearly
shows that the classification accuracy increased significantly
when training and testing are both done using ScanOb-
jectNN versus when training is done using ModelNet40
(Table 3 Column 2). However, we also notice an observable
performance drop comparing to the pure synthetic setting
in Table 1. This gives an important message: point cloud
classification on real-world data is still open, a dataset
with real-world properties can help, but further research is
necessary to regain the high performance as in synthetic
setting. In the following, we investigate the performance
change in different types of perturbations in our dataset.

Background. As shown in Table 4 Columns 3-7,
background makes strong impact to the classification
performance of all methods. Specifically, except PointCNN
[25], all methods performed worse on OBJ BG compared
with OBJ ONLY. It can be explained by the fact that



Ours ModelNet40
w/o BG w/ BG w/o BG w/ BG

3DmFV [2] 69.8 63.0 54.1 51.5
PointNet [30] 74.4 68.2 60.4 50.9

SpiderCNN [44] 76.9 73.7 52.7 46.6
PointNet++ [32] 80.2 77.9 55.0 47.4

DGCNN [42] 81.5 78.1 58.7 54.7
PointCNN [25] 80.8 78.5 38.1 49.2

Table 5. Overall accuracy in % when training on our hardest variant
PB T50 RS, with and without background (BG) points. Testing is
done on the same variant of our dataset, and on ModelNet40. The
second header indicates the results corresponding to the training
set. The results show that (1) background impacts negatively to
the classification performance, and (2) training on our real-world
objects generalizes to CAD evaluation better than the opposite case.

(a) (b) (c)

(d) (e) (f)

Figure 4. Confusion matrices of (a) 3DmFV [2], (b) PointNet [30],
(c) SpiderCNN [44], (d) PointNet++ [32], (e) DGCNN [42] and (f)
PointCNN [25] on our hardest PB T50 RS. This shows that there
are no major ambiguity issues among object classes in our dataset.

background elements could distract the learning in existing
methods by confusing between foreground and background
points. To further confirm the negative effect of having
background objects, we conduct a control experiment using
the hardest perturbation variant, i.e., PB T50 RS. Table 5
shows the overall accuracy of all existing models decrease
when trained and tested with the presence of background.

Perturbation. Table 4 also shows the impact of pertur-
bations to the classification performance (compared with
Column 2). In this result, we observe that translation and
rotation both make the classification performance decrease
significantly, especially with larger perturbations that
introduce more background and partiality. Scale further
degrades the performance by a small gap. Figure 4 illustrates
the confusion matrices of all methods on our hardest variant
PB T50 RS. It can be seen that there are no major ambiguity
issues in our categories, and our dataset is challenging due
to the high variations in real-world data.

Generalization to CAD Data. While it is shown that net-
works trained on synthetic data generalizes poorly to our
dataset (Table 3), the reverse is not true. Here we tested the
generalization capability of existing methods when trained
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Figure 5. Part segmentation on the chair category. From top to
bottom: part prediction, ground truth in 2048 points, and high-
resolution ground truth from original point clouds.

on ScanObjectNN. In this experiment, all methods were
trained on our PB T50 RS (with and without background)
and tested on ModelNet40. The results in the last two
columns in Table 5 clearly show that existing methods could
generalize better when they were trained on real-world data
(compared with the results in Table 3). Performance on indi-
vidual classes are presented in Table 6. As shown in Table 6,
lower accuracies are achieved on classes such as bed, cabinet,
and desk, where complete structures are never observed in
real scans because these objects are often situated adjacent
to walls or near corners of rooms. Therefore, we advocate
using real-world data in training object classification because
the generalization is shown to be much better.

4.3. Part Annotation on Real-World Data
We further support part-based annotation in our dataset.

So far, point cloud classification methods only evaluate part
segmentation task on ShapeNet [40]. However, there has
been no publicly available dataset for part segmentation
on real-world data despite the availability of scene meshes
datasets [19, 9]. We close this gap with our dataset, which
will be released for future research. Figure 5 shows a visual-
ization of part segmentation on our data. Table 7 and Table 8
provide a baseline part segmentation evaluation on our data.
Using these part annotations may also improve partial object
classification in the future.

4.4. Discussion
Our quantitative evaluations show that performing object

classification on real-world data is challenging. The state-of-
the-art methods in our benchmark have up to 78.5% accuracy
on our hardest variant (PB T50 RS). The benchmark also
helps us recognize the following open problems:

Background is expected to provide context information but
also introduce noise. It is desirable to have an approach that
can distinguish foreground from background to effectively
exploit context information in the classification task.
Object partiality, caused by low reconstruction quality or



cabinet chair desk display door shelf table bed sink sofa toilet

3DmFV [2] 20.8 67.1 8.1 75.0 75.0 86.0 97.0 10.0 50.0 21.0 64.0
PointNet [30] 2.8 72.1 43.0 83.0 100.0 98.0 93.0 4.0 35.0 23.0 26.0

SpiderCNN [44] 17.9 54.3 17.4 86.0 90.0 90.0 88.0 7.0 40.0 32.0 14.0
PointNet++ [32] 18.9 71.4 12.8 94.0 45.0 79.0 88.0 2.0 45.0 14.0 35.0

DGCNN [42] 47.2 75.7 11.6 94.0 85.0 83.0 100.0 9.0 45.0 42.0 12.0
PointCNN [25] 42.5 77.9 24.4 76.0 20.0 92.0 76.0 4.0 35.0 24.0 19.0

Table 6. Per class average accuracy in % on ModelNet40 when training was done on our PB T50 RS. Low accuracies are highlighted.

OBJ BG

PB
T25

PB
T25

R

PB
T50

R

PB
T50

RS

PointNet [30] 81.3 83.1 82.2 79.9 78.8
PointNet++ [32] 80.3 85.4 84.1 81.3 82.8

Table 7. Overall accuracy in % of part segmentation of chairs in the
different variants of ScanObjectNN.

background seat back base arm

PointNet [30] 81.4 81.8 86.7 52.5 40.5
PointNet++ [32] 81.9 87.7 89.2 62.3 64.6

Table 8. Per part average accuracy in % of chairs in our hardest
variant PB T50 RS.

inaccurate object proposals, also needs to be addressed. Part
segmentation techniques [30, 25] could help to describe par-
tial objects.
Generalization between CAD models and real-world scans
needs more investigations. In general, we found that training
on real-world data and testing on CADs can generalize better
than the opposite case. It could be explained that real-world
data have more variations including background and par-
tiality as discussed above. However, CAD models are still
important because real-world scans are seldom complete and
noise free. Bridging this domain gap could be an important
research direction.

To facilitate future work, in the next sections, we propose
ideas and baseline solutions.

5. Background-aware Classification Network
We propose here a simple deep network to handle the

occurrence of background in point clouds obtained from
real scans; this is one of the open problems we raised in
the previous section. An issue with existing point cloud
classification networks is the lack of capability to distinguish
between foreground and background points. In other words,
existing methods take point clouds as a whole and directly
calculate features for classification. This issue stems from
the design of these networks and also from the simplicity of
available training datasets, e.g., ModelNet40.

To tackle this issue, our idea is to make the network aware
of the presence of background by adding a segmentation-
guided branch to the classification network. The segmenta-

tion branch predicts an object mask that separates the fore-
ground from the background. Note that the mask can be
easily obtained from our training data since our objects are
originally from scene instance segmentation datasets [19, 9].

5.1. Network Architecture
Our background-aware (BGA) model is built on top of

PointNet++ [32] (BGA-PN++). Our network is depicted in
Figure 6. In particular, we use three levels of set abstractions
from the PointNet++ to extract point cloud global features.
Global features are then passed through three fully connected
layers to produce object classification score. Dropout is
also used in a similar manner with the original PointNet++
architecture. Three PointNet feature propagation modules
are then employed to compute object masks in segmentation.
The feature vector just before the last fully connected layer
for the classification score is used as the input to the first
PointNet feature propagation modules, making the predicted
object mask driven by the classification output. We trained
both branches jointly. The loss function is the sum of the
classification and segmentation loss, which can be written
as Ltotal = Lclass + λLseg where Lclass and Lseg are both
cross entropy losses between the predicted and ground-truth
class labels and object masks, respectively. We set λ = 0.5
in our experiments.

Joint learning for both classification and segmentation
with the use of object masks allows the network to be aware
of relevant points (i.e., acknowledge the presence of back-
ground points). In addition, using classification prediction
as a prior to segmentation guides the network to learn ob-
ject masks that are consistent with the true shape of desired
object classes. As to be detailed in our experiments, jointly
learning classification and mask prediction results in better
classification accuracy in noisy scenarios.

Furthermore, we also introduce BGA-DGCNN, which is
a background-aware network based on DGCNN [42]. We
apply the same concept as BGA-PN++ that jointly predicts
both classification and segmentation, where the last fully
connected layer of the classification branch is used as input to
the segmentation branch. Our experimental results show that
our bga model is adaptive to different network architectures.

5.2. Evaluation
We evaluate our network on both our dataset and Model-

Net40. Table 9 shows a comparison between our network
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Figure 6. Our proposed network.

Figure 7. Sample objects and their corresponding predicted masks
from the test set of PB T50 RS by our BGA-PN++. Note that color
on point clouds is for visualization purposes, but the input to the
networks are (x, y, z) coordinates only.

and existing ones on our hardest variant PB T50 RS and
ModelNet40 respectively. Our BGA models, BGA-PN++
and BGA-DGCNN, both outperform their vanilla counter-
parts with BGA-PN++ achieving the best performance on
our PB T50 RS. On ModelNet40, our BGA-PN++ improves
upon PointNet++ by almost 5% (with 52.6% of accuracy),
while our BGA-DGCNN achieves the top performance of
56.5%. Note that, in this evaluation all methods were trained
on our i.e. PB T50 RS. As shown, our BGA models gains
improvements in both ModelNet40 and our dataset.

In addition, we also evaluated the segmentation perfor-
mance of our network. Experimental results showed that
our BGA-PN++ performed at 77.6% and 71.0%, while our
BGA-DGCNN achieved 78.5% and 74.3% of segmentation
accuracy on our PB T50 RS and ModelNet40, respectively.
We visualize some of the object masks predicted by our
BGA-PN++ in Figure 7. It can be seen that our proposed
network is able to mask out the background fairly accurately.

Ours ModelNet40
OA mAcc OA mAcc

3DmFV [2] 63.0 58.1 51.5 52.2
PointNet [30] 68.2 63.4 50.9 52.7

SpiderCNN [44] 73.7 69.8 46.6 48.8
PointNet++ [32] 77.9 75.4 47.4 45.9

DGCNN [42] 78.1 73.6 54.7 54.9
PointCNN [25] 78.5 75.1 49.2 44.6

BGA-PN++ (ours) 80.2 77.5 52.6 50.6
BGA-DGCNN (ours) 79.9 75.7 56.5 57.6

Table 9. Overall and average class accuracy in % on our PB T50 RS
and on ModelNet40. Training is done on our PB T50 RS.

(a) Wrongly classified bed (b) Correctly classified display

Input Output Input Output

Figure 8. Sample segmentation results of our BGA-PN++ on Mod-
elNet40. Background and foreground are marked in orange and
blue, respectively.

5.3. Discussion and Limitation
While both BGA models demonstrate good performance,

we found that DGCNN-based networks generalizes well
between real and CAD data, e.g., when being trained on
real and tested on CAD data (Table 9) and vice versa (Table
3). Moreover, Table 3 also show that the same is true for
DGCNN-based models on the synthetic to real case. More
investigations on the DGCNN architecture could lead to
models that generalize better and bridge the gap between
synthetic and real data.

Our proposed BGA is not without limitation. In general,
it requires object masks and background to be included in
the data. Fig. 8-(a) shows a fail case of our method when
evaluating on a background-free ModelNet40 object.

6. Conclusion
This paper revisits state-of-the-art object classification

methods on point cloud data. We found that existing meth-
ods were successful with synthetic data but failed on realistic
data. To prove this, we built a new real-world object dataset
containing ∼ 15, 000 objects in 15 categories. Compared
with current datasets, our dataset offers more practical chal-
lenges including background occurrence, object partiality,
and different deformation variants. We benchmarked exist-
ing methods on our new dataset, discussed issues, identified
open problems, and suggested possible solutions. We also
proposed a new point cloud network to classify objects with
background. Experimental results showed the advance of
our method on both synthetic and real-world object datasets.
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