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Abstract
Deep-learning models can be difficult to understand and

control intuitively due to the black-box nature of these mod-
els. However, such lack of interpretability and human ac-
tionability in the models’ decision processes make it diffi-
cult to trust these models in critical applications that af-
fect the lives of people. We propose to alleviate these prob-
lems through the use of attribute and uncertainty models
in deep networks. Our contributions are showing that at-
tribute models can improve the interpretability of models
in a direct and causal manner, as opposed to post-hoc ex-
planations. The models do not compromise and sometimes
even improve performance on the CUB and OAI datasets.
We show how users can have better control of our mod-
els through a test-time intervention procedure where they
can make contributions to intermediate model outputs (at-
tributes) and improve overall target performance. Finally,
we show the usefulness of understanding uncertainty on at-
tributes to enable users to achieve better intervention.

1. Introduction
Current deep-learning models achieve superior perfor-
mance over humans in many benchmarks, but suffer from
poor interpretability and actionability due to their black-
box nature and the lack of human control over their deci-
sions. We define interpretability as the ability to understand
why a model arrived at its decisions and actionability as the
ability to intervene when we believe it has made mistakes.

Suppose that we are performing disease classification on
medical images, a standard image classifier can only pro-
vide a probability distribution over disease classes through
a black-box process. Ideally, a classification model that has
understood what a disease means would tell us “I (model)
believe that there is an 80% chance of disease because there
might be cysts present and that there are large deformations
around this area. However, I am only 60% certain about the
presence of cysts and require assistance on this aspect.” The
user will then have a better understanding of the model’s de-
cisions and will therefore be able to act on this information
by telling the model what it is uncertain about.

These aspects are important because of the increasing
prevalence of deep learning and machine learning in many
applications. These applications include credit risk as-

sessment, facial recognition, medical diagnosis and more,
which means the outputs of these algorithms can have a pro-
found impact on the lives of many people. If we are to trust
these algorithms, we need to have a better understanding
and control of them.

To achieve the desired behaviors, we make use of at-
tribute and uncertainty models. In this work, we show that:

• attribute models can improve the interpretability of our
models in a direct and causal manner as opposed to
post-hoc explanations,

• attribute models do not compromise and can even im-
prove the performance of our models on the provided
datasets,

• attribute models can also be used in a test-time inter-
vention procedure that enables humans to make con-
tributions to intermediate model outputs and improve
overall target performance, and

• uncertainty modeling of attributes enables us to under-
stand which attributes the model is having difficulty
with and provide better human intervention, allowing
us to achieve better test-time intervention results.

2. Related Work
Interpretability Work in improving the interpretability
of neural networks is heavily focused on generation of ex-
planations of model decisions that are post-hoc and not true
explanations. For example, [10] uses image saliency maps
as a heatmap for where the model focuses on, [5] answers
questions and uses a separate model to point to the evidence,
and [1] tries to find evidence for explanations.

Attribute Models The research focus in the use of at-
tributes has generally revolved around zero-shot classifi-
cation where the works aim to generalize beyond classes
within the training set by defining attributes as the repre-
sentation for classes. [9] uses the training set classes to
learn attribute classifiers that allow prediction on disjoint
test set classes. [6] extends the expressiveness of attributes
by making use of attribute correlations. Not much work has
been done to explore the use and limitations of attributes in
the standard supervised learning classification models due
to the effectiveness of end-to-end deep learning models.

1



Figure 1. Model Diagram for OAI and CUB datasets

Uncertainty Models Bayesian Deep Learning is receiv-
ing increased research interest due to the effectiveness of
deep learning and the usefulness of uncertainty estimates
in downstream tasks such as Active Learning and Bayesian
Optimization. [2] explores a general method for placing dis-
tributions on the weights of neural networks (NNs) instead
of getting point estimates through Maximum Likelihood Es-
timation, thereafter allowing us to sample multiple model
predictions per input data point. [7] discusses the break-
down of uncertainty into aleatoric uncertainty and epistemic
uncertainty in a Computer Vision context. [3] proposes
Bayesian CNNs and discusses the link between dropout and
Bayesian learning in neural networks. We make use of
dropout to implement Bayesian NNs that enable us to un-
derstand the uncertainty in attribute predictions.

3. Method

3.1. Problem Statement
We assume that we have a dataset D =

{(X1, A1, y1), (X2, A2, y2), ..., (Xn, An, yn)} which
is composed of n triplets, where Xi ∈ RD is the ith input
data, Ai ∈ RK ,K � D is the semantically meaningful
attributes of the ith example and yi is either a class category
if it is a classification task or a continuous value if it is a
regression task for the ith example. We are interested in
achieving 1) high performance for our predictions ŷ and 2)
good interpretability and actionability of any models.

3.2. Algorithms
Standard black-box models predict the target ŷ = f(X)

with a deep learning model f that uses X directly. To make
our predictions interpretable and actionable, we want to
make use of semantically meaningful attributes as a bottle-
neck layer such that the final output prediction model only
uses these attributes as inputs. Additionally, we want to
model the uncertainty of the attributes so humans can inter-
vene when uncertainty is high.

Towards this end, we will learn an attribute model
Â, σÂ = g(X), where σÂ ∈ [0, 1]K is the uncertainty
in the attributes prediction and g is a Bayesian neural net-
work model. If the input dimensionality is low, g can also
represent other machine learning models that give uncer-
tainty estimates. Finally, we will make our final prediction
ŷ = h(Â), where h can be a deep learning model or any
other machine learning model.

3.2.1 Interpretability through Attribute Model
Given a test data point Xtest, we are able to see the predic-
tions of attributes Âtest, σÂtest

= g(Xtest) before it is used
to make the prediction ŷ = h(Âtest). If the data point has
high error, we can check if the model has misunderstood
the input by checking Âtest, allowing us to learn how to
improve our model and debug individual predictions.

3.2.2 Uncertainty Modelling of Attributes
Given a data point X , we are able to get the predictions and
the corresponding uncertainty of attributes Â, σÂ = g(X).

We can obtain uncertainty estimates of the attributes
through different methods. While the final softmax opera-
tion commonly used in deep classification models provides
a probability distribution over classes, it does not provide
us with a good estimate of uncertainty of our outputs. This
is because the parameters are obtained through Maximum
Likelihood training, which does not maintain multiple hy-
potheses and will not capture uncertainty inherent in the
task and parameters. Additionally, if we have a regression
task, there will be not be a softmax distribution that we can
use to compute uncertainty.

To obtain better uncertainty estimates and to have a
method that generalizes to continuous outputs, we imple-
mented Bayesian neural networks by making use of [3]. In
this algorithm, we will train a standard neural network with
dropout. During inference, instead of turning off dropout
(and keeping all the weights), we will keep dropout and run
multiple forward passes to get multiple samples of the out-
put. The inference procedure for a dropout-trained CNN is
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Figure 2. Test-time Intervention Algorithm Diagram

described in Algorithm 1.

Algorithm 1 Predicting uncertainty σi of attribute ai of
given input x

1: Generated samples G = ∅
2: for j in range(num samples) do
3: âi = CNN(x) . dropout turned on
4: Append âi to G
5: σi = std(G)

3.2.3 Actionability with Test-time Intervention
Suppose the model is uncertain about any attribute or we
are dissatisfied with the attribute value, we can help the
model by setting the attribute to the correct value as shown
in Fig. 2. With the new Âintervened, we use our Â→ y part
of the model to produce the final ŷ. We term this procedure
as test-time intervention.

The intuition behind why this procedure makes sense is
because our targets y can be difficult to predict by humans
while the attributes A are simple. For example, CUB is
a difficult 200-way classification task but the attributes of
CUB can be as simple as the color of a bird’s chest. If
humans are able to intervene in intermediate model repre-
sentations (attributes) to provide alternative model outputs,
it demonstrates the interpretability and actionability of the
model.

prandom(ai) =
1

K
(1)

psoftmax(ai) =
|âi − 0.5|∑K
j=1 |âj − 0.5|

(2)

pdropout(ai) =
(σi)

S∑K
j=1(σj)

S
(3)

There are several ways in which we can select Â for
intervention. The simplest and most naive intervention
scheme is a random selection (Eq. 1) of the K different at-
tributes. If we are classifying the attributes, a reasonable
but poor performing scheme is selection according to how
uncertain the softmax distribution is (Eq. 2). We do this by
measuring the absolute distance of the probability distribu-
tion from 0.5 for the CUB dataset since attributes are binary
and there is maximum entropy at 0.5. Finally, we make use
of the uncertainty values returned by the Bayesian neural
networks as shown in Eq. 3. S is a scaling factor that al-
lows us to interpolate between random (S = 0) and greedy

(S → ∞) selection. For our experiments, we simulate dif-
ferent levels of human-intervention by providing different
amounts of oracle A information that will override Â.

4. Experiments
4.1. Datasets

We will be using the public Caltech-UCSD Birds-200-
2011 (CUB) [12] dataset, which is an image classification
problem with 200 different bird species. The bird images
are also annotated with their ground-truth attributes such
as colors and patterns. Additionally, we will also be us-
ing a private medical image dataset (OAI) consisting of
knee X-rays, where the task is to predict the Kellgren &
Lawrence Grade (KLG) [8] which is an ordinal classifica-
tion/regression that indicates the severity of osteoarthritis,
a pervasive ailment affecting millions worldwide. There
are 18 attributes, which are clinical annotations such as the
presence of cysts.

4.2. Oracle Results
Oracle A→ y To understand if attributes A (clinical an-
notations) are useful for the prediction of target y (KLG),
we first construct an experiment where we allow a machine
learning model to access the ground truth A and assess its
prediction performance on y. As seen in Tab. 2, the ma-
chine learning models have good performances when given
oracle A. This provides an upper-bound for our models.

4.3. Model Setups
There are many different ways to integrate attributes A

into a deep learning model, we implemented a X → y
model where we do not use A at all. This model is an
important baseline since it tells us what is the effect of
the introduction of A into our model. Then, we experi-
ment on two possible A-based setups: X → Â → y and
X → Â, Â → y. Let ResNet18(X) be the function
that uses a pre-trained 18-layer ResNet (with first 6 layers
frozen) without the fully-connected layers to map an image
input X to an intermediate representation vector, FCM (X)
be a fully connected layer that maps the input to M out-
puts, and InceptionV 3(X) be version 3 of Inception model
[4, 11].

1) X→ y This model simply takes the input data X
and directly maps it to the target y with a deep network.
OAI Implementation: fOAI(X) = FC1(ResNet18(X)),

Training loss = LOAIx→y where

LOAIx→y = LOAIA→y =
1

n

n∑
i=1

MSE(y(i), ŷ(i))

CUB Implementation: fCUB(X) =
FC200(InceptionV 3(X)), training loss = LCUBx→y where

LCUBx→y = LCUBA→y =
1

n

n∑
i=1

CE(y(i), ŷ(i))
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Algorithm OAI RMSE of y OAI RMSE of A CUB Acc of y CUB Acc of A
X → y 0.428 - 74.64 -
X → Â→ y 0.408 0.718 73.14 83.24
X → Â, Â→ y with MLP 0.429 0.737 63.93 94.92
X → Â, Â→ y with RBF SVM - - 64.43 94.92
X → Â, Â→ y with LR - - 65.67 94.92

Table 1. Prediction performances on y and A for different model setups on OAI and CUB dataset.

2) X→ Â, Â→ y In this model, we train the deep
network X → Â first before we use the predicted attributes
Â to train general machine learning models Â → y. This
model is different from X → Â → y because it is not
trained end-to-end. Therefore, loss from y is not back-
propagated to the X → Â model.

OAI Implementation: gOAI(X) = FCK(ResNet18(X)),
fOAI(X) = RBFSVM(gOAI(X)). RBFSVM is the ε-
Support Vector Classifier (ε-SVC) with a radial basis func-
tion (RBF) kernel. Training loss on g is LOAIx→A and training
loss on f is |ξ|ε the ε-insensitive RBFSVM loss.

LOAIx→A =
1

n

n∑
i=1

MSE(A(i), Â(i))

CUB Implementation: gCUB(X) =
FCK(InceptionV 3(X)), fCUB1 (X) =
RBFSVM(gCUB(X)), fCUB2 (X) = LR(gCUB(X))
(One-vs-All multiclass logistic regression classification),
fCUB3 (X) = MLP50,50(g

CUB(X)) (4-layer perceptron).
Training loss on g is LCUBx→A , on f1, f3 is LCUBA→y , and on f2
is the multiclass squared hinge loss.

LCUBx→A =
1

n

n∑
i=1

CE(A(i), Â(i))

3) X→ Â→ y This model forces the intermediate
feature representation to be mapped to Â first, before the
y value. We used g(X) = FCK(ResNet18(X)), f(X) =
FCo(FC50(FC50(g(X)))) for both datasets.

OAI Implementation: K = 10, o = 1, and we found
λ = 1. Training loss LOAIx→A→y = LOAIA→y + λLOAIx→A, where
λ is a weighting factor on the loss on A.

CUB Implementation: K = 113, o = 200, and we found
λ = 1. Training loss LCUBx→A→y = LCUBA→y + λLCUBx→A , where
λ is a weighting factor on the loss on A.

4.3.1 Implementation Details
For the OAI dataset, we used the Adam optimizer with a
batch size of 8 and learning rate of 0.0005, while for the
X → Â → y of the CUB dataset, we used the SGD op-
timizer with a batch size of 64 and learning rate of 0.01.

Early stopping is done by selecting the model with the best
validation performance. The hyperparameters are selected
using random search to optimize y on the validation set.

4.4. Results

Algorithm RMSE
Oracle A→ y (MLP) 0.191
Oracle SVM A→ y (RBF) 0.120

Table 2. OAI performance on y using Oracle A.

Macro Micro
Precision 0.753 0.731
Recall 0.734 0.731
F1 0.736 0.731

Table 3. CUB performance on y for X → Â→ Y model.

We use accuracy as the performance metric for the CUB
dataset. The equation we use for accuracy is defined below.

accuracyCUB =
1

n

n∑
i=1

1{y(i)pred == y(i)} = tp

n

We use the root mean squared error (RMSE) as the perfor-
mance metric for the OAI dataset, which is defined below.

RMSEOAI =

√√√√ 1

n

n∑
i=1

(y(i) − y(i)hat)2

From Tab. 1, we observe that X → Â → y achieves
an RMSE on y of 0.425, which is better than the baseline
X → y’s 0.434 despite having an additional λLA loss term
in its training loss. This seems to suggest that modelling
attributes A in the intermediate layers not only allows us to
achieve better interpretability, it also has the potential to en-
able us to perform better on our target y. Additionally, its
surprising that X → Â → y achieves an RMSE on A of
0.718 while the X → Â, Â → y achieves 0.766 because
there is an additional Ly term in the former model’s loss.
In any case, we believe that there might be better perfor-
mance for the X → Â, Â → y model if we used a more
expressive Â→ y model such as a deep network.
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Figure 3. Test-time intervention performances o. y for different sampling schemes on OAI and CUB dataset. The different attribute
sampling and replacement schemes are random, dropout-based uncertainty, and softmax-based uncertainty.

Figure 4. Successful test-time intervention examples.

4.5. Test-time Intervention Results

Fig. 3 shows performance improvements on both
datasets after intervention, which supports the motivation
of learning with attributes. Fig. 3-(a) and -(b) show that
even with random selection of attributes to intervene, the
performance still significantly improves. But more impor-
tantly, it shows that modelling and intervening with uncer-
tainty is important as on all model variants in both datasets,
our selection with dropout achieves the best performance,
and softmax selection also improves over random. Fig. 3-
(c) and -(d) show performances with different values of S in
pdropout, showing that a good uncertainty model is impor-
tant. Fig. 4 shows qualitative examples on the CUB dataset.

4.6. Limitations

Fig. 5-(ii) shows misclassified examples of our attribute
model. The middle row shows the query of a Brandt Cor-
morant (top row) and a Frigatebird (bottom row). These
show that there can be multiple possible labels for a given

Figure 5. (i) shows the confusion matrix of our X → Â → y
model. (ii) shows examples of our limitations. (ii)-(b) shows our
query bird, while (ii)-(a) and (ii)-(c) show an example from the
correct and misclassified classes, respectively.

attribute in a bird class, e.g. the Brandt Cormorant’s lower
beak can be blue or orange, while a Frigatebird’s belly can
be red (males) or white (females). These make classification
difficult even for humans as the examples from the misclas-
sified class (ii)-(c) look visually more similar than a exam-
ples of the same species (ii)-(a). Our attribute model does
not completely solve and struggles with this many-to-one
mapping, but this phenomena further highlights the advan-
tage of using attributes for interpretability. In the future, we
hope to design better attribute learning models that can han-
dle more complex hierarchies of attribute labels that would
be able to handle the many-to-one mapping better.

5. Conclusion
Our work shows that attribute models allow us to achieve

interpretability by allowing us to ask counterfactual ques-
tions and actionability by enabling human intervention.
With our proposed uncertainty modelling of the attribute
models, we further improved the effectiveness of human
intervention by understanding where models require assis-
tance. We provided extensive experiments on the CUB and
OAI datasets to demonstrate our contributions. Through our
framework, we hope to allow machine learning models to
become more interpretable and actionable.
Acknowledgements We would like to thank Thao Ngyuen for pro-
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dataset, and Pang Wei Koh and Percy Liang for their advice.
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6. Contributions
Yew Siang: OAI dataset. Mikaela and Olivia: CUB dataset. All:
Ideas and report writing.

Code link is found here: https://drive.google.com/
file/d/1yDQQfkqPXCiUEzkeQ3fUi3CkAj1mkHiR/
view?usp=sharing
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